日本地球惑星科学連合2024年大会

講演情報

[E] ポスター発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM13] Dynamics of the Inner Magnetospheric System

2024年5月26日(日) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:桂華 邦裕(東京大学大学院理学系研究科地球惑星科学専攻)、三好 由純(名古屋大学宇宙地球環境研究所)、Sarris E Sarris(Democritus University of Thrace)、Thomas G Thomas(Dartmouth College)


17:15 〜 18:45

[PEM13-P10] An Empirical Plasmapause Model using Arase/PWE Data and Machine Learning

*浅輪 優斗1松田 昇也1笠原 禎也1三好 由純2篠原 育3 (1.金沢大学、2.名古屋大学、3.ISAS / JAXA)

キーワード:プラズマポーズ、プラズマ圏ヒス、機械学習

The plasmapause is a boundary that clearly separates the high-density plasmasphere from the low-density plasma trough region. Determining the variable plasmapause position is important for understanding the dynamics of the inner magnetosphere. The plasmapause position is generally identified as a sharp gradient in electron density. Tracking of the upper hybrid resonance (UHR) frequency is the most popular way to determine the plasmapause location in space. In this study, we propose a machine learning approach to determine the plasmapause location from the electric and magnetic field plasma wave measurement data, instead of using the UHR frequency tracking.
We used electric and magnetic field power spectral density data observed by the Onboard Frequency Analyzer (OFA), a subsystem of the Plasma Wave Experiment (PWE) aboard the Arase satellite. To improve the accuracy of plasmapause determination, we used satellite orbit data (Mcilwain-L value, altitude, magnetic latitude, and magnetic localtime) and geomagnetic activity index. We examined averaged plasmapause locations under several geomagnetic conditions: geomagnetic quiet (Kp<2), moderate disturbance (2<=Kp<4) and large disturbance (4<=Kp) cases. We confirmed that the shrink and erosion of plasmasphere depending on the geomagnetic activity are clearly seen in the result. Furthermore, a distinctive features of the plasma plume are observed around 16h magnetic localtime during geomagnetic disturbance period. In this presentation, we introduce an empirical plasmapause model based on the least squares method applied to the machine learning results. We confirmed that the model accurately reproduced the variations in the plasmapause location corresponding to changes in the Kp index.