日本地球惑星科学連合2024年大会

講演情報

[E] ポスター発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS03] 太陽系小天体:太陽系の形成と進化における最新成果と今後の展望

2024年5月28日(火) 17:15 〜 18:45 ポスター会場 (幕張メッセ国際展示場 6ホール)

コンビーナ:深井 稜汰(宇宙航空研究開発機構)、岡田 達明(宇宙航空研究開発機構宇宙科学研究所)、荒川 創太(海洋研究開発機構)、吉田 二美(産業医科大学)

17:15 〜 18:45

[PPS03-P04] 小惑星リュウグウ試料の公募研究配布とOSIRIS-REx帰還試料キュレーション準備の状況報告

*矢田 達1安部 正真1深井 稜汰1、西村 征洋1、畠田 健太朗2、与賀田 佳澄1、宮崎 明子1、長嶋 加奈1、小嶋 智子1、田原 瑠衣1、中野 有紗1、榎戸 祐馬1、金丸 礼1石崎 拓也1岡田 達明1坂本 佳奈子1菅原 春菜1鈴木 志野1、杉山 由香1、中田 彩子1、人見 勇矢2、熊谷 和也2、副島 広道2、ピロージュ セドリック3、ローリー リオネル3、ロゾー ダミアン3、ハム ヴァンサン3、ビブリング ジャンーピエール3古市 圭佑4、森 将輝4湯本 航生4長 勇一郎4杉田 精司4橘 省吾4臼井 寛裕4 (1.宇宙航空研究開発機構、2.マリン・ワーク・ジャパン、3.パリーサクレー大学宇宙物理研究所、4.東京大学宇宙惑星科学機構)

キーワード:サンプルリターン、キュレーション、はやぶさ2、オシリスーレックス、リュウグウ、ベンヌ

A series of recent sample return missions from extraterrestrial bodies, such as Hayabusa and Hayabusa2, OSIRIS-REx, and Chang’E-5, give us new insights of planetary sciences [1-13]. Initial analyses and phase-2 curation analyses revealed that samples returned from C-type asteroid Ryugu are similar to CI chondrites, the most primitive, volatile-rich type of meteorites ever found [2-11]. Especially, less interlayered water in phyllosilicates of Ryugu samples compared to CI chondrites [4], which could not have been clarified if they were treated in ambient air. Thus, it is very essential for scientific values of samples returned from extraterrestrial bodies to avoid terrestrial contamination, destruction, and any modification after their returns.
The Ryugu sample gas was recovered just after its return in Quick Look Facility in Australia [14, 15]. Solid Ryugu samples were partially removed and are preserved in vacuum condition in the clean chambers (CCs) in the Extraterrestrial Sample Curation Center (ESCuC) of JAXA Sagamihara campus. And rest of them are handled, described and preserved in purified nitrogen condition of the CCs [16]. One and half year after its return, we started distributing the Ryugu samples via Announcement of Opportunities (AOs). In the 1st AO (June 2022), total mass of 229 mg of individual Ryugu grains were distributed to 40 proposals. In the 2nd AO (January 2023), total mass of 217.0 mg as individual grains and aggregates were distributed to 38 selected proposers. In the 3rd AO (July 2023), total mass of 117.7 mg of solid Ryugu samples and two types of gas bottles containing the sample container gas [14, 15] were distributed to 17 selected proposers. In the latest 4th AO (December 2023), total mass of 147.0 mg are now under distribution to 22 selected proposers.
Planning for the construction of the curation facility for OSIRIS-REx returned Bennu samples started in 2021. A new clean room was built in the ISAS curation building in the fall of 2022. The nitrogen-filled CCs for the Bennu samples were designed based on those for Ryugu samples [2, 16], and were installed in the clean room at the end of 2023. Because the JAXA fraction of Bennu sample can be regarded as its remote storage, a certain fraction of the sample will remain stored in the CCs for the future generation. Two additional chambers were also attached to the CCs for infrared spectrometers, micro-FT-IR (JASCO IRT-5200) and an infrared microscope MicrOmega, which is the same instrument used for the initial description of the Ryugu sample, for the direct comparison with the Ryugu sample [2, 3]. Along with the CCs, glove boxes for additional analyses and for the storage of the samples returned from researchers were installed in the clean room. We are going to receive Bennu samples from NASA in this summer, and planning to announce AO for the Bennu samples in the FY2024 after initial descriptions in the CCs of the ESCuC [17].
References: [1] Nakamura T. et al. (2011) Science 333:1113–1116. [2] Yada T. et al. (2022) Nat. Astron. 6, 214–220. [3] Pilorget C. et al. (2022) Nat. Astron. 6, 221–225. [4] Yokoyama T. et al. (2022) Science, 379, DOI: 10.1126/science.abn7850. [5] Nakamura T. et al. (2022) Science 379, DOI: 10.1126/science.abn8671. [6] Noguchi T. et al. (2022) Nat. Astron. 7, 170-181. [7] Okazaki R. et al. (2023) Science 379, DOI: 10.1126/science.abo0431. [8] Naraoka H. et al. (2023) Science 379, DOI: 10.1126/science.abn9033. [9] Yabuta H. et al. (2023) Science 379, DOI: 10.1126/science.abn9057. [10] Ito M. et al. (2022) Nat. Astron. 6, 1163–1171. [11] Nakamura E. et al. (2022) Proc. Jpn. Acad. Ser. B, 98, 227-282. [12] Russell S. S. et al. (2024) Lunar Planet. Sci, abstract #1197. [13] Zhou C. et al. (2022) Nat. Comm. 13, 5336. [14] Okazaki R. et al. (2022) Sci. Adv., 8, eabo7239. [15] Miura Y. N. et al. (2022) Earth Planets Space 74, 76. [16]Yada T. et al. (2023) Earth Planets Space 75, 170. [17] Fukai R. et al. (2024), this meeting.