11:45 AM - 12:00 PM
[PPS07-10] Global N-body Simulation of Gap Edge Structures Created by Perturbations from a Small Satellite Embedded in Saturn’s Rings
Keywords:Saturn's ring, Saturn's satellite, N-body simulation
We reveal how the striking gap features - the density waves, sharp edge, and vertical wall structure - are simultaneously formed by an interplay of the satellite-ring and ring particle-particle interactions. In particular, we propose a new mechanism to quantitatively explain the creation of the vertical wall structure at the gap edge. Inelastic collisions between ring particles damp their eccentricity excited by the satellite's perturbations to enhance the surface density at the gap edge, making its sharp edges more pronounced. We find the eccentricity damping process inevitably raises the vertical wall structures the most effectively in the second epicycle waves. Particle-particle collisions generally convert their lateral epicyclic motion into vertical motion. Because the excited epicyclic motion is the greatest near the ring edge and the epicycle motions are aligned in the first waves, the conversion is the most efficient in the gap edge of the second waves and the wall height is scaled by the satellite Hill radius, which are consistent with the observations.