日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG40] Science of slow-to-fast earthquakes

2024年5月28日(火) 09:00 〜 10:15 コンベンションホール (CH-B) (幕張メッセ国際会議場)

コンビーナ:加藤 愛太郎(東京大学地震研究所)、山口 飛鳥(東京大学大気海洋研究所)、濱田 洋平(国立研究開発法人海洋研究開発機構)、野田 朱美(気象庁気象研究所)、座長:加藤 愛太郎(東京大学地震研究所)、新井 隆太(国立研究開発法人海洋研究開発機構)

09:45 〜 10:00

[SCG40-04] Foreshock sequence prior to the 2024 M7.6 Noto-Hanto earthquake, Japan

*加藤 愛太郎1中川 茂樹1蔵下 英司1酒井 慎一1 (1.東京大学地震研究所)

A destructive M7.6 earthquake occurred on January 1st, 2024, at shallow depths along the northern coast of Noto Peninsula on the back-arc side of Central Japan. The earthquake rupture started from an area where an intensive seismic swarm has lasted for more than 3 years (from December 2020). The seismic swarm consisted of numerous small planar faults dipping toward the southeast. In May 2023, an M6.5 event, that was the largest event before the M7.6 rupture, emanated from the swarm area toward shallow depths, resulting in the subsequent increase in the seismicity in the swarm area (Kato 2024 GRL). Then, the seismicity had gradually decayed to a level before the 2023 M6.5 event. Here we have explored the continuous seismic data to revel the nucleation process of the M7.6 event. Approximately two weeks before the M7.6 event, seismic activity exhibited a weak localization around the point of rupture initiation. After that, a foreshock sequence commenced roughly one hour before the occurrence of the M7.6 event, concentrated in proximity to the epicenter (within a 1-kilometer epicentral distance). The tightly clustered foreshock sequence consisted of around 20 events, including an M5.5 event 4 minutes prior and an M3 class event 1 second before the onset of M7.6 event. The M7.6 rupture nucleated from the deep side of one of planar clusters that were dominantly dipping toward the southeast direction. The growth process of the rupture in the M7.6 event is characterized by a complicated nature.