日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG40] Science of slow-to-fast earthquakes

2024年5月28日(火) 10:45 〜 12:00 コンベンションホール (CH-B) (幕張メッセ国際会議場)

コンビーナ:加藤 愛太郎(東京大学地震研究所)、山口 飛鳥(東京大学大気海洋研究所)、濱田 洋平(国立研究開発法人海洋研究開発機構)、野田 朱美(気象庁気象研究所)、座長:山口 飛鳥(東京大学大気海洋研究所)、濱田 洋平(国立研究開発法人海洋研究開発機構)

11:00 〜 11:15

[SCG40-07] P- and S-wave velocity imaging from active and passive seismic data for seamount subduction at Hyuga-Nada

*仲田 理映1望月 公廣1、仲田 典弘4,5木下 正高1橋本 優里3濱田 洋平2中村 恭之2三浦 誠一2新井 隆太2 (1.東京大学地震研究所、2.海洋研究開発機構、3.高知大学、4.Lawrence Berkeley National Laboratory、5.MIT)

キーワード:slow earthquakes、seismic imaging、active source、noise

Subducting seamounts are becoming a critically important controlling factor for megathrust fault slip behaviors through modulating structural, rheological and geomechanical properties. Determining these properties on, over and in the area surrounding seamounts provide essential insights into the effects of such a topographic relief. At Hyuga-Nada, the subducting Kyushu-Palau Ridge (KPR), a remnant of the Izu-Bonin Arc, separates the Ryukyu trench and the Nankai Trough. A rich distribution of tremors and very low frequency earthquakes observed around a currently subducting seamount suggests a strong of structural and pressure modulations due to the rough topography. Estimating both P-wave and S-wave velocities provides not only low velocity zones but also anomalous Vp/Vs (i.e., Poisson ratio) zones, constraining lithologies and fluid migrations further than a single parameter inversion. We use a dense Ocean Bottom Seismograph survey performed in 2020 to estimate both P-wave and S-wave velocity structures. The short-period OBSs recorded continuously over a month. Extracting waves excited by air-gun shots allows us to estimate P-wave velocities by traveltime tomography and full waveform inversion. Low P-wave velocity zones are indicated in the vicinity of topographic highs of the subducting seamount. In turn, ambient noise data provide S-wave velocity distribution by using interferometry techniques. We extract multiple modes of Scholte waves propagating between 0.5 to 1.0 km/s and then estimate the velocity model down to 500 m from the seabed. By integrating P- and S-wave velocities from the OBS survey with previously obtained seismic reflection images, we infer fluid properties, such as pore pressure distributions, and their links to the structural features such as faults and structures. We compare the results with the slow-earthquake distribution and discuss how anomalous physical properties may be associated with the generation of slow earthquakes.