日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT14] 地球深部科学

2024年5月31日(金) 13:45 〜 15:00 コンベンションホール (CH-B) (幕張メッセ国際会議場)

コンビーナ:河合 研志(東京大学大学院理学系研究科地球惑星科学専攻)、土屋 旬(愛媛大学地球深部ダイナミクス研究センター)、石井 貴之(岡山大学惑星物質研究所)、飯塚 理子(早稲田大学教育学部理学科地球科学専修)、座長:河合 研志(東京大学大学院理学系研究科地球惑星科学専攻)、土屋 旬(愛媛大学地球深部ダイナミクス研究センター)、飯塚 理子(早稲田大学教育学部理学科地球科学専修)、石井 貴之(岡山大学惑星物質研究所)

14:15 〜 14:30

[SIT14-14] Grain-size variation as a potential cause for the mid-mantle viscosity jump

*Tomoo Katsura1、Hongzhan Fei1,2、Maxim Ballmer3、Ulrich Faul4、Nicolas Walte5、Weiwei Cao6 (1.University of Bayreuth、2.Zhejiang University、3.University College London、4.Massachusetts Institute of Technology、5.Technical University of Munich、6.7Center for High Pressure Science and Technology Advanced Research)

キーワード:lower mantle, viscosity jump, grain growth, diffusion creep

The mid-mantle viscosity jump, an increase of 1-2 orders of magnitude in viscosity at depths of 800-1200 km, is a critical component of lower-mantle dynamics and evolution. This viscosity jump is inferred from geoid inversions, slab stagnation below the 660-km discontinuity, and changes in plume morphology at approximately 1000 km depth. However, the origin of this viscosity jump remains elusive as phase transitions of major lower-mantle minerals do not occur at these depths.
In this study, we propose that grain-size variation in the lower mantle could be responsible for the viscosity jump. This hypothesis is based on the absence of seismic anisotropy in most regions of the lower mantle, suggesting that diffusion creep may dominate. The rate of diffusion creep is inversely proportional to the grain size raised to the power of 2-3. Lithological variation may cause this grain size variation.
To test this hypothesis, we measured the grain-growth kinetics of bridgmanite as a function of the fraction of coexisting ferropericlase. Our results show that while the grain-growth kinetics is almost independent of the ferropericlase fraction down to 20 vol%, it increases rapidly with decreasing ferropericlase fraction at lower fractions. This suggests that bridgmanite grain sizes in pure-bridgmanite rock should be 2-3 orders of magnitude larger than those coexisting with 20 vol% ferropericlase over a timescale of 0.1 to 4.5 Gyr.
If diffusion creep is dominant, pure-bridgmanite rock would exhibit 4-9 orders of magnitude lower flow rates than pyrolite. Considering the contribution of climb-controlled dislocation creep, we estimate that pure-bridgmanite rock should be 1-2.5 orders of magnitude more viscous than pyrolite under lower-mantle stress conditions of 0.1-0.5 MPa.
Therefore, the mid-mantle viscosity jump could be explained by the grain-size contrast between the bridgmanite-enriched rock, which was formed in early Earth history by magma ocean solidification and has been preserved in the deep lower mantle due to its high viscosity, and the overlying pyrolitic rock.