日本地球惑星科学連合2024年大会

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-SS 地震学

[S-SS04] New trends in data acquisition, analysis and interpretation of seismicity

2024年5月26日(日) 09:00 〜 10:15 303 (幕張メッセ国際会議場)

コンビーナ:Grigoli Francesco(University of Pisa)、Enescu Bogdan(京都大学 大学院 理学研究科 地球惑星科学専攻 地球物理学教室)、青木 陽介(東京大学地震研究所)、内出 崇彦(産業技術総合研究所 地質調査総合センター 活断層・火山研究部門)、座長:Enescu Bogdan(京都大学 大学院 理学研究科 地球惑星科学専攻 地球物理学教室)、内出 崇彦(産業技術総合研究所 地質調査総合センター 活断層・火山研究部門)、青木 陽介(東京大学地震研究所)、Francesco Grigoli(University of Pisa)

09:00 〜 09:15

[SSS04-01] Earthquake sequence analysis usin SAIPy: a deep learning based python package for earthquake monitoring

*Nishtha Srivastava1,2、Claudia Quinteros Cartaya1Johannes Faber1,2 (1.Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany, 60438、2.Goethe University, Frankfurt am Main, Germany, 60438)

キーワード:Earthquake monitoring, Deep learning, Phase picking, event detection

Seismology has witnessed significant advancements in recent years with the application of deep learning methods to address a broad range of problems. These techniques have demonstrated their remarkable ability to effectively extract statistical properties from extensive datasets, surpassing the capabilities of traditional approaches to an extent. In this study, we present SAIPy, an open source Python package specifically developed for fast data processing by implementing deep learning. SAIPy offers solutions for multiple seismological tasks, including earthquake detection, magnitude estimation, seismic phase picking, and polarity identification. SAIPy provides an API that simplifies the integration of these advanced models, including CREIMERT, DynaPickerv2, and PolarCAP, along with benchmark datasets. The package has the potential to be used for real time earthquake monitoring to enable timely actions to mitigate the impact of seismic events. Ongoing development efforts aim to enhance the performance of SAIPy and incorporate additional features that enhance exploration efforts, and it also would be interesting to approach the retraining of the whole package as a multi-task learning problem.