JpGU-AGU Joint Meeting 2017

講演情報

[EE] 口頭発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI28] [EE] Data assimilation: A fundamental approach in geosciences

2017年5月22日(月) 10:45 〜 12:15 301B (国際会議場 3F)

コンビーナ:中野 慎也(情報・システム研究機構 統計数理研究所)、藤井 陽介(気象庁気象研究所)、宮崎 真一(京都大学理学研究科)、三好 建正(理化学研究所計算科学研究機構)、座長:中野 慎也(情報・システム研究機構 統計数理研究所)

12:00 〜 12:15

[MGI28-12] Data assimilation for massive autonomous systems based on a second-order adjoint method

伊藤 伸一1、*長尾 大道1,2山中 晃徳3塚田 祐貴4小山 敏幸4加納 将行1井上 純哉5 (1.東京大学地震研究所、2.東京大学大学院情報理工学系研究科、3.東京農工大学大学院工学府、4.名古屋大学大学院工学研究科、5.東京大学先端科学技術研究センター)

キーワード:data assmilation, adjoint method, phase-field model, uncertainty quantification, Bayesian statistics

We propose an adjoint-based data assimilation method for massive autonomous models that produces optimum estimates and their uncertainties within reasonable computation time and resource constraints. The uncertainties are given as several diagonal elements of an inverse Hessian matrix, which is the covariance matrix of a normal distribution that approximates the target posterior probability density function in the neighborhood of the optimum. Conventional algorithms for deriving the inverse Hessian matrix require O(CN2+N3) computations and O(N2) memory, where N is the number of degrees of freedom of a given autonomous system and C is the number of computations needed to simulate time series of suitable length. The proposed method using a second-order adjoint method allows us to directly evaluate the diagonal elements of the inverse Hessian matrix without computing all of its elements. This drastically reduces the number of computations to O(C) and the amount of memory to O(N) for each diagonal element. The proposed method is validated through numerical tests using a massive two-dimensional Kobayashi phase-field model. We confirm that the proposed method correctly reproduces the parameter and initial state assumed in advance, and successfully evaluates the uncertainty of the parameter.