10:45 AM - 11:00 AM
[MGI29-07] Data-driven science for solving problems in geosciences
★Invited papers
Keywords:data-driven science, sparse-modeling, machine learning
[1] Igarashi Y, Nagata K, Kuwatani T, Omori T, Nakanishi-Ohno Y, Okada M (2016) Three levels of data-driven science. J Phys Confere Ser 699: 012001-1 - 012001-13.
[2] Kuwatani T, Nagata K, Okada M, Toriumi M (2014) Markov random field modeling for mapping geofluid distributions from seismic velocity structures. Earth Planet Space 66: 5-1 - 5-9.
[3] Kuwatani T, Nagata K, Okada M, Watanabe T, Ogawa Y, Komai T, Tsuchiya N (2014) Machine-learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits. Sci Rep 4: 7077-1—7077-6.
[4] Nakata R, Kuwatani T, Okada M, Hori T (2016) Geodetic inversion for spatial distribution of slip under smoothness, discontinuity, and sparsity constraints. Earth Planet Space 68, 20-1 – 20-10.
[5] Araki T, Ochi T, Matsumoto N, Akaho S (2015) Robust estimation of spatio-temporal distribution of slow slip event by switching model, Spatial Statistics.