JpGU-AGU Joint Meeting 2017

講演情報

[JJ] ポスター発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI32] [JJ] 計算科学による惑星形成・進化・環境変動研究の新展開

2017年5月22日(月) 15:30 〜 17:00 ポスター会場 (国際展示場 7ホール)

コンビーナ:林 祥介(神戸大学・大学院理学研究科 惑星学専攻/惑星科学研究センター(CPS))、小河 正基(東京大学大学院総合文化研究科広域科学専攻)、井田 茂(東京工業大学大学院理工学研究科地球惑星科学専攻)、草野 完也(名古屋大学宇宙地球環境研究所)

[MGI32-P04] Numerical simulation of circumplanetary disk formation for estimating the disk size and surface density

*波々伯部 広隆1町田 正博2 (1.九州大学 大学院理学府 地球惑星科学専攻、2.九州大学 大学院理学研究院 地球惑星科学部門)

キーワード:周惑星円盤、流体力学、数値シミュレーション

Circumplanetary disks are possible targets for future observations and include some information on planet formation. Numerical simulation is useful to predict such observations.
To investigate the structure of circumplanetary disk and its environment, extremely high resolution is required. Hence we parallelize a three-dimensional hydrodynamic simulation code of static mesh refinement method. The parallelized code enables us to compute 10 times higher spatial resolution than previous studies. When 15 times Hill radius is adopted as the computational domain in the radial direction, the finest spatial resolution is 10-3 of the Hill radius which is comparable to the present Jovian radius. The resolution is sufficient to investigate circumplanetary disk structure.
We perform a numerical simulation of circumplanetary disk formation around a planet embedded in protoplanetary disk. We consider a local rotating Cartesian coordinate. The coordinate is rotating around a star with Keplerian angular velocity and curvature is neglected. Basic equations of inviscid fluid hydrodynamic without self-gravity are solved. Some symmetric boundary conditions are imposed to accelerate the calculation, in which rotational, periodic, and mirror symmetries are imposed as radial, azimuthal and vertical directions respectively. The other side boundaries in the radial direction and in the vertical direction of computational domain are connected to unperturbed flow.
In this resolution, the angular momentum of the initial condition can not be neglected. Then a artificial retrograde circumplanetary disk forms potentially and the disk is not dissipative even in long time integration. To avoid the problem, we introduce sink cells around protoplanet. Finally, a prograde disk is formed.

Acknowledgement: The computation was carried out using the computer facilities at Research Institute for Information Technology, Kyushu University.