JpGU-AGU Joint Meeting 2017

Presentation information

[EE] Poster

P (Space and Planetary Sciences) » P-EM Solar-Terrestrial Sciences, Space Electromagnetism & Space Environment

[P-EM16] [EE] Physics of Inner Magnetosphere Coupling

Wed. May 24, 2017 1:45 PM - 3:15 PM Poster Hall (International Exhibition Hall HALL7)

convener:Danny Summers(Memorial University of Newfoundland), Jichun Zhang(University of New Hampshire Main Campus), Yusuke Ebihara(Research Institute for Sustainable Humanosphere, Kyoto University), Kunihiro Keika(Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo ), Aleksandr Y Ukhorskiy(Johns Hopkins University Applied Physics Laboratory), Dae-Young Lee(Chungbuk Natl Univ), Yiqun Yu(Beihang University), Yoshizumi Miyoshi(Institute for Space-Earth Environmental Research, Nagoya University)

[PEM16-P11] Rapid acceleration of outer radiation belt electrons associated with solar wind pressure pulse : A coupling simulation of GEMSIS-RB and GEMSIS-GM

*Masahiro Hayashi1, Yoshizumi Miyoshi1, Shinji Saito1, Yosuke Matsumoto2, Kunihiro Keika3, Tomoaki Hori3, Takanobu Amano3, Kanako Seki3, Shinobu Machida1 (1.Institute for Space-Earth Environmental Research,Nagoya University, 2.Chiba University, 3.University of Tokyo)

Keywords:radiation belt

Relativistic electron fluxes of the outer radiation belt dynamically change in response to solar wind variations. There are several time scales for the particle acceleration in MeV energy range. One of the shortest acceleration processes is wave-particle interactions between drifting electrons and fast-mode waves induced by compression of the dayside magnetopause through interplanetary shocks (e.g., Li et al., 1993). In order to investigate how relativistic electrons are accelerated by fast-mode waves driven by solar wind pressure pulse, we perform a code-coupling simulation using the GEMSIS-RB test particle simulation (Saito et al., 2010) and the GEMSIS-GM global MHD magnetosphere simulation (Matsumoto et al., 2010). As a case study, the interplanetary pressure pulse with the dynamic pressure of ~ 5 nPa is used as an up-stream condition. In the magnetosphere, the fast mode waves with the azimuthal electric field ( negative Ephi : |Ephi| ~ 10 mV/m) propagates from the dayside and then extends to the entire dayside magnetosphere from 0600 to 1800 MLT. Using the electric/magnetic fields simulated by the GEMSIS-GM, we calculate the electron motion with different initial conditions (energy, and pitch angle). As a result, the increase of electron fluxes occurs for a wide energy range and energy spectrum become hard. The acceleration depends on the initial energy of electrons. We also investigate initial pitch angle dependence of acceleration and find that the fluxes of electron whose initial pitch angle closer to 90°are largely enhanced. The pitch angle dependence may be a result of the latitudinal structure of the induced electric fields and the pich angle dependence of the drift velocity.
The results of investigation for initial energy and pitch angle imply that the acceleration condition of electrons is related to propagation speed of fast-mode waves, drift velocity of electrons and the spatial structure of electric field.