JpGU-AGU Joint Meeting 2017

講演情報

[EE] ポスター発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG63] [EE] Crust-Mantle Connections / Hard-Rock Drilling

2017年5月24日(水) 15:30 〜 17:00 ポスター会場 (国際展示場 7ホール)

コンビーナ:田村 芳彦(海洋研究開発機構 海洋掘削科学研究開発センター)、道林 克禎(静岡大学理学部地球科学科)、高澤 栄一(新潟大学理学部地質科学科)、Katy Jane Chamberlain(JAMSTEC)、森下 知晃(金沢大学理工研究域自然システム学系)、Henry JB Dick(Woods Hole Oceanographic Institution)、Mark K Reagan(University of Iowa)、Susanne M Straub(Lamont Doherty Earth Observatory of Columbia University)

[SCG63-P07] Direct evidence of hydration into mantle during shearing below a transform fault: Prince Edward transform fault, Southwest Indian Ridge

*道林 克禎1柿畑 優季1Henry Dick2 (1.静岡大学理学部地球科学科、2.ウッズホール海洋研究所)

キーワード:Transform fault, mantle, olivine fabrics

Southwest Indian Ridge (SWIR) is located to the southwest of Rodriguez Triple Junction, where three Indian ocean ridges meet (Zhou & Dick, 2013, Nature). SWIR is one of the slowest spreading ocean ridges in the world. In this study, we studied microstructural development of 21 peridotite samples obtained from Prince Edward transform fault of SWIR by PROTEA5 cruise in 1983. The peridotites consist dominantly of olivine, orthopyroxene and clinopyroxene with minor amounts of amphibole and plagioclase as well as secondary minerals such as serpentine and magnetite. The peridotites were classified into four groups based on their microstructures: 3 ultramylonites mostly consisting of extremely fine crystals (3-5µm), 13 heterogeneous tectonites consisting of coarse-grained crystals and fine-grained matrix, 1 cataclasite and 4 intensely serpentinized peridotites. Olivine Mg# is 0.90-0.91 and spinel Cr# is 0.1-0.35. Amphibole crystals have chemical compositions of tremolite and magnesio-hornblende and they were intensely deformed within the ultramylonites and the heterogeneous tectonites, indicating that they have occurred before or during intense shearing in mantle. Moreover, extremely fine grain sizes of olivine and microboudin textures in both pyroxene and spinel crystals suggest that these peridotites have been sheared under high stress conditions. Furthermore, olivine crystal-fabrics within the amphibole bearing peridotites have B and E types that could be developed under hydrous conditions, whereas olivine fabrics within the other peridotites have A and D types that could be developed under anhydrous conditions (Karato et al., 2008, Annu. Rev. Earth Planet. Sci.). Consequently, the petrophysical characteristics of peridotites in this study indicate that the uppermost mantle below the Prince Edward transform fault has been locally but intensely hydrated during shearing due to transform movement.