JpGU-AGU Joint Meeting 2017

講演情報

[EE] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT22] [EE] 核-マントルの相互作用と共進化

2017年5月21日(日) 09:00 〜 10:30 A05 (東京ベイ幕張ホール)

コンビーナ:土屋 卓久(愛媛大学地球深部ダイナミクス研究センター)、寺崎 英紀(大阪大学大学院理学研究科)、Satish-Kumar Madhusoodhan(Department of Geology, Faculty of Science, Niigata University)、入舩 徹男(愛媛大学地球深部ダイナミクス研究センター)、Hernlund John(Earth-Life Science Institute, Tokyo Institute of Technology)、大谷 栄治(東北大学大学院理学研究科地学専攻)、座長:大谷 栄治(東北大学大学院理学研究科地学専攻)

09:15 〜 09:30

[SIT22-26] Newly developed internal-resistive heated diamond-anvil cell with boron-doped diamond: Toward deep lower-mantle petrology

*舘野 繁彦1小澤 春香2,1Xie Longjian1中島 陽一3坂本 直哉4河口 沙織5米田 明1平尾 直久5 (1.岡山大学惑星物質研究所、2.東京工業大学先導原子力研究所、3.熊本大学大学院先導機構、4.北海道大学創成研究機構、5.高輝度光科学研究センター)

キーワード:DAC, lower mantle

The development of the diamond-anvil cell (DAC) technique combined with laser heating enabled easy access to the entire lower-mantle pressure and temperature regime at laboratory. However, a number of major issues remain highly controversial, including the location of the post-perovskite phase boundary, solid–liquid iron partitioning, Fe–Mg partitioning among mantle minerals, and melting temperatures of mantle rocks. Although the discrepancies between previous experimental studies on these issues have likely arisen from multiple sources, they could more or less have originated from possible problems in the laser-heated diamond-anvil cell (LHDAC) experiment: inherited temperature gradient in the heated area and temperature fluctuation during heating.

In this study, we developed an internal-resistive heated diamond-anvil cell with a new resistance heater—boron-doped diamond (BDD)—along with an optimized design of the cell assembly, including a composite gasket. We find this heating technique to demonstrate clear advantages over the conventional LHDAC technique, such as (1) ultrahigh temperature generation (>3500 K), (2) long-term stability (>1 h at 2500 K), (3) uniform radial temperature distribution (±35 K at 2500 K across a 40-µm area), (4) chemical inertness (no boron diffusion into the silicate sample), and (5) weak X-ray diffraction intensity from the BDD heater. This newly developed IHDAC with a BDD heater can determine the phase diagrams of silicate/oxide materials with high precision and can be used in deep lower-mantle petrology.