JpGU-AGU Joint Meeting 2017

講演情報

[JJ] ポスター発表

セッション記号 S (固体地球科学) » S-MP 岩石学・鉱物学

[S-MP43] [JJ] 脆性延性境界と超臨界地殻流体:島弧地殻エネルギー

2017年5月23日(火) 10:45 〜 12:15 ポスター会場 (国際展示場 7ホール)

コンビーナ:土屋 範芳(東北大学大学院環境科学研究科環境科学専攻)、浅沼 宏(産業技術総合研究所・再生可能エネルギー研究センター)、小川 康雄(東京工業大学理学院火山流体研究センター)

[SMP43-P06] 三軸変形実験ならびに急減圧実験にみる超臨界高温岩体(花崗岩)の物理特性

*北村 真奈美1高橋 美紀1高木 健太2平野 伸夫2土屋 範芳2 (1.産業技術総合研究所、2.東北大学大学院環境科学研究科)

キーワード:超臨界地熱発電、急減圧破砕、脆性ー延性遷移領域、花崗岩

In order to extract geothermal energy effectively and safely from magma and/or adjacent hot rock, we need to tackle many issues which require new technology development, such as a technique to control a risk from induced-earthquakes. On a development of induced-earthquake mitigation technology, it is required to comprehensively understand roles of factors on occurrences of the induced-earthquake (e.g., regional and local stress conditions, strength of the hot rock, pore pressure of supercritical fluid, crack density or porosity, permeability and fluid-rock reaction) and their intercorrelations (e.g., Asanuma et al., 2012).
Our purpose of this first series of the experiments is to clarify a relationship between the rock strength and the crack density under the supercritical fluid conditions. Although in this abstract we only show a preliminary result of triaxial deformation experiment on intact granite rock strength under high-temperature (250 – 650°C), high-pressure (104 MPa) condition at a constant load-point velocity (0.1 μm/sec) using a gas-rig at GSJ/AIST, we at JpGU meeting will report alteration of the granite rock strength relevant to crack density increase. We used Oshima granite as the specimen for the deformation, which has initially less than 0.2 % of the porosity and 4.29±0.55 km/s in Vp (dry) and 2.49±0.19 km/s in Vs (dry), respectively. All experimental products showed the brittle feature having several oblique fracture surfaces with c.a. 35° to cylindrical axis of the specimen, but the amount of stress drop became smaller at higher temperature and/or at lower pore pressure. Estimated Young’s modulus increased with decreasing the temperature from 35.9 GPa at 650°C to 57.4 GPa at 250°C. At 550 °C, the stress drop accelerated the deformation with 8~10 times faster velocity than that at load-point. In contrast, at 650 °C, the velocity during stress drop kept the velocity within the same order of the load-point velocity. Therefore, the deformation mechanism may start to be changed from brittle to ductile when the temperature exceeds 650 °C, even though the brittle fracture is observed.
Highly dense cracked granite specimens were formed by a rapid decompression treatment using an autoclave settled at Tohoku University (Hirano et al., 2016JpGU), caused by a reduction of the fluid pressure within several seconds from vapor/supercritical state (10 – 48 MPa, 550 °C) to ambient pressure. X-ray CT scanning on the specimens after the rapid decompression treatment let us recognize that numerous microcracks developed mainly along grain boundaries. Using X-ray CT images, we also have a plan to evaluate the fracture density for the fractured granite rock specimens. The rapid decompression treatment imposed the porosity increasing towards 3.75 % and Vp and Vs decreasing towards 1.37±0.52 km/s and 0.97±0.25 km/s on the specimens, respectively. In future, we will compare the strength for the intact granite rocks resulted from the triaxial deformation experiments with that for the fractured granite rocks to create the relationship between the granite strength and the fracture density under the supercritical conditions.