JpGU-AGU Joint Meeting 2017

講演情報

[JJ] 口頭発表

セッション記号 S (固体地球科学) » S-SS 地震学

[S-SS17] [JJ] 地震発生の物理・断層のレオロジー

2017年5月20日(土) 13:45 〜 15:15 A09 (東京ベイ幕張ホール)

コンビーナ:松澤 孝紀(国立研究開発法人 防災科学技術研究所)、飯沼 卓史(国立研究開発法人 海洋研究開発機構)、谷川 亘(国立研究開発法人海洋研究開発機構高知コア研究所)、向吉 秀樹(島根大学大学院総合理工学研究科地球資源環境学領域)、座長:飯沼 卓史(国立研究開発法人 海洋研究開発機構)、座長:廣野 哲朗(大阪大学 大学院 理学研究科 宇宙地球科学専攻)

14:30 〜 14:45

[SSS17-10] Experimental measurements and numerical analyses about the temperature change of rocks with stress chang

*Xiaoqiu Yang1Weiren Lin2,3Osamu Tadai4Xin Zeng1 (1.South China Sea Institute of Oceanology, Chinese Academy of Sciences、2.Graduate School of Engineering, Kyoto University、3.Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)、4.Marine Works Japan Ltd.)

キーワード:Adiabatic pressure derivative of temperature (β), Temperature response, Stress change, Hydrostatic compression system, Numerical simulating

The temperature responses of rocks to stress changes are key to understanding temperature anomalies in geoscience phenomena such as earthquakes. We developed a new hydrostatic compression system in which the rock specimen center can achieve adiabatic conditions during the first ~10 s following rapid loading or unloading, and systematically measured the representative lithologies of several sedimentary, igneous and metamorphic rocks sampled from two seismogenic zones (the Longmenshan Fault Zone in Sichuan, and the Chelungpu Fault Zone (TCDP Hole-A) in Taiwan), and several quarries worldwide. And we built a finite element model of heat conduction to confirm the measured results of temperature response of rocks to stress change. The results show that: (1) the adiabatic pressure derivative of the temperature (β) for most crustal rocks is ~1.5 to 6.2 mK MPa-1, (2) the temperature response of sedimentary rocks (~3.5 to 6.2 mK MPa-1) is larger than that of igneous and metamorphic rocks (~2.5 to 3.2 mK MPa-1), and (3) there is a good linear correlation between β (in mK MPa-1) and the bulk modulus K (in GPa): β=(-0.068·K+5.69)±0.4, R2=0.85. This empirical equation will be very useful for estimating the distribution of β in the crust, since K can be calculated when profiles of crustal density (ρ) and elastic wave velocities (Vp, Vs) are obtained from gravity surveys and seismic exploration.