14:40 〜 15:00
[1Z1-05] ハイパーネットによる識別モデルのベイズ推定とモデル平均化
キーワード:ハイパーネット、ベイズ推定
ニューラルネットワークには高い表現力があり,実世界での複雑なタスクに用いることができる.しかし,学習に利用できるデータは限られているため,過学習を起こしやすい問題がある.過学習を防止することはニューラル ネットワークの利用において最も重要な課題の1つであり,様々な正則化手法が研究されている.本稿では,ハイパーネットを用いたニューラルネットの正則化手法を提案する.提案手法では,確率分布からのサンプルを入力とするハイパーネットを使用し,ニューラルネットのパラメータを生成する.これによりハイパーネットによって生成されるパラメータは暗黙的な分布を持ち,学習を正則化することが期待される.また,重みの分布が学習されることから,モデル平均化により識別精度の向上を試みる.実験では提案手法には一定の正則化効果があることがわかった.