JSAI2019

Presentation information

General Session

General Session » [GS] J-2 Machine learning

[2P1-J-2] Machine learning: conquests of limits

Wed. Jun 5, 2019 9:00 AM - 10:20 AM Room P (Front-left room of 1F Exhibition hall)

Chair:Takuma Otsuka Reviewer:Yuiko Tsunomori

10:00 AM - 10:20 AM

[2P1-J-2-04] Collaborative filtering based on distributed expression considering differences in evaluation trends

〇Ryousuke Goto1, Hideki Fujinami1, Tianxiang Yang1, Masayuki Goto1 (1. Facutly of Science and Engeneering, Waseda University)

Keywords:collaborative filtering, recommender system, Item2Vec

ECサイトを利用するユーザの嗜好が多様化している.そのため,過去の購買履歴と購買したアイテムに対する評価履歴から各ユーザの嗜好を把握し,嗜好にあったアイテムを推薦するシステムの重要性が高まっている.従来の推薦手法の1つでは,各アイテムをユーザが高く評価したか否かによってアイテムを2つに分割し,同一の評価傾向のアイテム集合を1つの購買系列として,単一のモデルによって学習する.しかし,単一のモデルによって異なる評価傾向のアイテムを学習すると,アイテムに対する評価傾向を適切に表現できない.そこで本研究では,評価傾向の異なるアイテムを別々のモデルで表現することによって,ユーザの嗜好より反映した推薦手法を提案する.また提案手法を映画評価履歴データに適用し提案手法の有効性を検証する.映画評価履歴データを用いた実験を行い,MAEによる評価を行った結果,従来手法と比べて予測精度の向上が見られた.提案手法では,評価値の高低を考慮した分散表現が得られ,よりユーザの嗜好に沿ったアイテムの推薦を行うことが可能となった.