13:40 〜 14:00
[1E3-GS-9-02] Fine-Tuning による領域に特化した DistilBERT モデルの構築
キーワード:バート、ファインチューニング、領域依存
本論文では BERT の領域依存の問題を指摘し、Fine-Tuning を利用することで領域に特化した事前学習モデルを構築する。具体的には既存 BERT モデルのパラメータを DistilBERT のパラメータの初期値とし、領域毎のコーパスを利用して DistilBERT モデルの学習を行う。これによって領域に特化した DistilBERT モデルの構築が効率的に行える。実験では、領域毎に空所単語の推定問題を作成し、問題の領域に特化して構築したモデルと既存 BERT モデルを比較することで、構築したモデルの有益性を示す。
講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。