18:00 〜 18:20
[1E5-GS-9-03] 質問なし読解事例に対するBERTの回答可能性に着目した機械読解難易度分析
キーワード:質問応答、機械読解、回答可能、BERT、難易度
本論文では,機械読解データセットSQuAD1.1およびBERTによる機械読解モデルを対象として,質問応答事例を難易度別に「回答容易」・「回答困難」の二つのクラスに分類する手順を示し,このクラス分類法の有用性について論じる.具体的には,本論文では,機械読解タスクに対してfine-tuning済みのBERT機械読解モデルに対して,コンテキストのみを与え,質問を与えない場合においても回答を正答できる事例を「回答容易」クラスとするアプローチを提案する.この方法をSQuAD1.1訓練事例約85,000事例に対する10分割交差検定において適用することにより,「回答容易」クラス約12,500事例と「回答困難」クラス約75,000事例に分割した.さらに,「回答容易」クラス約12,500事例を訓練事例として訓練したBERT機械読解モデルの性能が,同数の「回答困難」クラス事例を訓練事例として訓練したBERT機械読解モデルの性能を下回ることを示す.
講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。