2020年度 人工知能学会全国大会(第34回)

講演情報

オーガナイズドセッション

オーガナイズドセッション » OS-2 食とAI

[1F3-OS-2a] 食とAI (1)

2020年6月9日(火) 13:20 〜 15:00 F会場 (jsai2020online-6)

野中 朋美(立命館大学)、藤井 信忠(神戸大学)

13:20 〜 13:40

[1F3-OS-2a-01] 深層学習を用いたアボカドの追熟段階分類手法の提案

〇杉本 隼斗1、久野 文菜1、谷口 航平1、濱川 礼1 (1. 中京大学)

キーワード:アボカド、追熟、非破壊、深層学習

本研究では、アボカドの食べ頃判断支援を目的とした深層学習によるアボカドの追熟段階分類手法を提案する。アボカドは収穫後、追熟を経て食べ頃を迎える果物であり、一般消費者に食べ頃の見極めが要求される。アボカドの食べ頃を見極めるには、主に果皮の色や質感、硬度などが指標とされる。しかし、これらの指標は曖昧であり、熟練者でなければ正確な判断は困難である。
このような問題に対し、様々な追熟段階分類手法が提案されているが、特殊デバイスが必要とされる手法が多く、一般消費者が手軽に利用可能な手法は少ない。また、深層学習の画像認識による手法は提案されていない。深層学習は高精度な分類が期待され、一度データを学習させたモデルを利用すれば、ユーザは画像入力のみで出力結果を得ることが可能であるため、アボカドの追熟段階分類においても有効であると考えた。
そこで本研究では、深層学習を用いたアプローチによってアボカドの追熟段階分類を行った。深層学習はアボカドの果実検出にYOLOv3、追熟段階分類にVGG19を使用した。評価の結果、果実検出では高精度な検出が可能となったが、追熟段階分類では多くの改良点が残る結果となった。

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード