2020年度 人工知能学会全国大会(第34回)

講演情報

国際セッション

国際セッション » E-2 Machine learning

[1K5-ES-2] Machine learning: Social application (2)

2020年6月9日(火) 17:20 〜 18:40 K会場 (jsai2020online-11)

座長:鹿島久嗣(京都大学)

17:20 〜 17:40

[1K5-ES-2-01] Predicting the NBA winning percentage base on the linear regression model

〇Wei-De He1, Yi-Ting Chiang1, Hung-Jui Chang1 (1. Chung Yuan Christian University)

キーワード:regression model, stepwise regression, sigmoid function, NBA

This study analyses the NBA regular season result from 2015-19. Traditional statistical data are used as explanatory variables to establish linear regression models. We use the two team's score intervals predicted by ourmodels as the win rate indicator. By using stepwise regression methods to organize the data can eectively improve model accuracy. Experiment results show a 49% of correctness for predict a match with multiple games, and a 92% correctness with at most one game dierence. The main factor of causing incorrect prediction is also recognized as the imbalance competition system.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード