2020年度 人工知能学会全国大会(第34回)

講演情報

講演取消

国際セッション

国際セッション » E-2 Machine learning

[1K5-ES-2] Machine learning: Social application (2)

2020年6月9日(火) 17:20 〜 18:40 K会場 (jsai2020online-11)

座長:鹿島久嗣(京都大学)

17:40 〜 18:00

[1K5-ES-2-02] Forecasting Item-level Retail Sales Demand Using Combination Model

〇YINGSHA YANG1, KAZUHIRO KOIKE1, YASUYUKI MITSUI1 (1. ASKUL)

キーワード:小売り、組み合わせ予測、機械学習、古典的な時系列モデル

The accuracy of sales demand forecast at item-level is a big issue for inventory management in retail industry, especially in e-commerce domain where forecasting becomes more difficult because of vast array of items, frequent promotions and unexpected event. In this paper, we propose a combination forecast model which integrates some cutting-edge forecast methods, such as decomposition model like Prophet and machine learning methods like XGBoost and CatBoost as well as some classical statistical methods. In order to handle massive data efficiently, we use a new light-weight weighting method to combine single models. We test the model based on real sales data set on long time span, and results show the combination method is superior to any single method in both stability and accuracy.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード