2020年度 人工知能学会全国大会(第34回)

講演情報

一般セッション

一般セッション » J-13 AI応用

[1N4-GS-13] AI応用: 機械学習と応用 (1)

2020年6月9日(火) 15:20 〜 17:00 N会場 (jsai2020online-14)

座長:市川嘉裕(奈良工業高等専門学校)

15:40 〜 16:00

[1N4-GS-13-02] ニューラルネットを用いた超臨界地熱資源評価手法の開発

〇小林 洋介1、石塚 師也2、茂木 透3、鈴木 浩一4、渡邉 教弘5、山谷 祐介5、岡本 京祐5、浅沼 宏5、梶原 竜哉6、杉本 健6、齋藤 遼一6、永野 宏治1 (1. 室蘭工業大学、2. 京都大学、3. 東京工業大学、4. 北海道大学、5. 産業技術総合研究所、6. 地熱エンジニアリング株式会社)

キーワード:超臨界地熱、地熱予測、ニューラルネット

政府策定の「エネルギー基本計画」及び「エネルギー・環境・イノベーション戦略」では,地熱発電の導入拡大が掲げられている。これを受けNEDOではより高出力な超臨界地熱水を用いた地熱発電所の建設に必要な技術開発が行われている。我々は,地熱発電に必要な熱流体である超臨界地熱資源の量を推定する際に機械学習技術が利用できないか検討している。本発表ではすでに従来型の地熱発電所などの開発が進み一定の地下データが得られている葛根田地熱地帯を評価対象とした。収集したデータから既存の地下温度の観測値を教師とし,地下の物理探査等で利用される探査坑井の座標,比抵抗,微小地震の下限震度,重力異常値,鉱物の分布を示す鉱物アイソグラッドといった特徴量を入力するニューラルネットを構築,学習して地下温度予測モデルを作成した。そして,これまでに最も深部まで探索した地下温度データでその性能を評価し,RMSEが39.3度での予測が可能なことが示されたので報告する。

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード