Presentation information

General Session

General Session » J-5 Web intelligence

[2E6-GS-5] Web intelligence: Social data analysis (3)

Wed. Jun 10, 2020 5:50 PM - 7:30 PM Room E (jsai2020online-5)


6:30 PM - 6:50 PM

[2E6-GS-5-03] A Transfer Learning based framework for Link's Role Discovery

〇Shu Liu1, Shumpei Kikuta1, Fujio Toriumi1 (1. Univ. of Tokyo)

Keywords:Complex network, Roll discovery, Transfer learning

This paper aims to provide a framework for link's role discovery by using supervised information. The framework includes graph transformation, representation learning, transfer learning and role assignment. We use Edge-dual graph to regard links as nodes, struc2vec to gain links representation, adversarial learning model to transfer the target domain to the source domain to assign the roles for the target network's links. We show our proposed framework with better accuracy compared with existed method by a series of experiments on adjusted barbell graphs. Future work includes wider applications on other topology networks and real-world networks as well, and improvement on accuracy with bigger difference between the source network and the target network by updating the components used in the proposed framework.

Authentication for paper PDF access

A password is required to view paper PDFs. If you are a registered participant, please log on the site from Participant Log In.
You could view the PDF with entering the PDF viewing password bellow.