2020年度 人工知能学会全国大会(第34回)

講演情報

国際セッション

国際セッション » E-2 Machine learning

[2K4-ES-2] Machine learning: GAN

2020年6月10日(水) 13:50 〜 15:30 K会場 (jsai2020online-11)

座長:Ahmed Moustafa(名古屋工業大学)

14:50 〜 15:10

[2K4-ES-2-04] Synthetic Image Augmentation for Damage Region Segmentation using Conditional GAN with Structure Edge

〇Takato Yasuno1, Michihiro Nakajima1, Seiji Sekiguchi1, Kazuhiro Noda1, Kiyoshi Aoyanagi1, Sakura Kato1 (1. Yachiyo Engineering, Co.Ltd.)

キーワード:Social infrastructure, Damage inspection, Sparse segmentation, Rare class generation, Conditional GAN

For inspection and diagnosis of social infrastructure, primary damage region are recognized for repair targets. But, the degradation at worse level has rarely occurred, and the damage regions of interest are often narrow. The both scarcity and imbalance property on the damage region of interest influences limited performance to detect damage. If additional dataset of damaged images can be generated, it may enable to improve accuracy in damage region segmentation algorithm. We propose a synthetic augmentation procedure to generate damaged images using the image-to-image translation mapping from the tricategorical label that consists the both semantic label and structure edge to the real damage image. Actually, in case of bridge inspection, we apply the RC concrete structure. We applied popular per-pixel segmentation algorithms such as the FCN-8s, SegNet, and DeepLabv3+Xception-v2. We demonstrates that re-training a dataset added with synthetic augmentation procedure make higher accuracy based on indices the mean IoU, damage region of interest IoU, precision, recall, BF score.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード