2020年度 人工知能学会全国大会(第34回)

講演情報

国際セッション

国際セッション » E-2 Machine learning

[2K6-ES-2] Machine learning: Modeling

2020年6月10日(水) 17:50 〜 19:30 K会場 (jsai2020online-11)

座長:森純一郎(東京大学)

18:10 〜 18:30

[2K6-ES-2-02] Sparsity enforcement on latent variables for better disentanglement in VAE

A Study on the Latent Space of VAE by Inducing Sparsity in the Encoder Network

〇Paulino Cristovao1,2, Hidemoto Nakada2,1, Yusuke Tanimura2,1, Hideki Asoh2 (1. University of Tsukuba, 2. National Institute of Advanced Industrial Science and Technology)

キーワード:disentangle latent representations, latent space, sparse representation, variational autoencoder.

We address the problem of unsupervised latent factorization and reconstruction accuracy. The related work on

unsupervised representations focuses on constraining the second term of Variational Autoencoders loss function:

The Kullback-Leibler component (Beta-VAE, FactorVAE Beta-TCVAE). Despite promising results, this comes with

a trade-off between disentanglement and reconstruction. Besides, it is not clear why minimizing the KL divergence

leads to disentanglement.

In this paper, we propose to achieve disentangled representations by sampling from a sparse distribution. To

give a visual appealing reconstruction for humans, we replace the conventional pixel-wise quadratic by perceptual

loss. We demonstrate the reconstruction quality and disentangled on synthetic datasets.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード