JSAI2020

Presentation information

General Session

General Session » J-10 Vision, speech

[2Q1-GS-10] Vision, speech: Fundamental theory and application

Wed. Jun 10, 2020 9:00 AM - 10:40 AM Room Q (jsai2020online-17)

座長:橋本博志(NEC)

9:20 AM - 9:40 AM

[2Q1-GS-10-02] Faster AutoAugment: Learning Augmentation Strategies using Backpropagation

〇Hataya Ryuichiro1,2, Jan Zdenek1, Kazuki Yoshizoe2, Hideki Nakayama1 (1. The University of Tokyo, 2. RIKEN AIP)

Keywords:data augmentation, imagene recognition

Data augmentation methods are indispensable heuristics to boost the performance of deep neural networks, especially in image recognition tasks. Recently, several studies have shown that augmentation strategies found by search algorithms outperform hand-made strategies. Such methods employ black-box search algorithms over image transformations with continuous or discrete parameters and require a long time to obtain better strategies. In this paper, we propose a differentiable policy search pipeline for data augmentation, which is much faster than previous methods. We introduce approximate gradients for several transformation operations with discrete parameters as well as the differentiable mechanism for selecting operations. As the objective of training, we minimize the distance between the distributions of augmented data and the original data, which can be differentiated. We show that our method, Faster AutoAugment, achieves significantly faster searching than prior work without a performance drop.

Authentication for paper PDF access

A password is required to view paper PDFs. If you are a registered participant, please log on the site from Participant Log In.
You could view the PDF with entering the PDF viewing password bellow.

Password