2020年度 人工知能学会全国大会(第34回)

講演情報

国際セッション

国際セッション » E-2 Machine learning

[3F1-ES-2] Machine learning: Social application (3)

2020年6月11日(木) 09:00 〜 10:40 F会場 (jsai2020online-6)

座長:Jun Nakamura(中央大学)

09:40 〜 10:00

[3F1-ES-2-03] Realizing an automatic responsibilities prediction system for road accident using 3D simulation and knowledge systems.

〇Helton Agbewonou YAWOVI1, Tadachika OZONO1, Toramatsu SHINTANI1 (1. Nagoya Institute of Technology )

キーワード:AI, Machine learning, Road accident, 3D simulator

With the increasing number of motorized vehicles, road accidents are now a big challenge for all countries in the world. Lot of researches in AI, Machine Learning and Deep Learning are conducting every year to find efficient solutions to reduce road accidents through predictions thanks to the usage of data from previously occurred road accidents. After an accident occurred, police have to make investigation to know the circumstances of the incident and determine the responsibilities of each actor. Sometimes, this task can be time-consuming for police and, therefore, support systems are requested. In our research, we focused on a system that can automatically build a 3D simulation (for visualization purpose) of an accident, given as input a manually made accident report. Our simulator, then, automatically generates labeled training data that will be used by the system for image recognition task to predict the responsibilities of each actor in the accident using a custom trained YOLO model. The simulator, also, generates a sketch of the accident to append to the manually made accident report inputted into the system by the user. Our objective is to create a system that can learn and make work easier and quicker for police and improve the traditional and manual way to determine responsibilities when road accidents occur.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード