2020年度 人工知能学会全国大会(第34回)

講演情報

インタラクティブセッション

[4Rin1] インタラクティブ2

2020年6月12日(金) 09:00 〜 10:40 R01会場 (jsai2020online-2-33)

[4Rin1-67] Trader-Company法:メタヒューリスティクスを用いた株価予測

金融機関を模したモデルによる時系列予測

〇伊藤 克哉1、南 賢太郎1、今城 健太郎1、中川 慧2 (1.株式会社 Preferred Networks、2.野村アセットマネジメント株式会社)

キーワード:メタヒューリスティクス、時系列予測、株価予測

近年、金融分野において、機械学習的手法を用いた定量的な金融予測手法の開発が実務的にも学術的にも盛んである。
しかし、機械学習を用いた定量的金融予測モデルの開発には三つの困難がある。まず、原理的に全てのモデルは短命でかつ、ほとんどチャンスレートの正解率しか達成できない。次に、取引戦略という特殊なルールを一般的な機械学習モデルが学習することは難しい。最後に、高い予測精度とモデルの解釈性を同時に達成することが難しい。これらの問題に対処するべく我々は、Trader-Company法という新しいメタヒューリスティクスを用いた予測アルゴリズムを提案する。Trader-Company法は、単純な予測アルゴリズムであるTraderとTraderを管理するCompanyからなる。提案手法は、短命で弱いモデルが大量に存在する実際の金融市場の特性を反映している。また取引戦略の枠組み内で最適化を行うため、最適な予測戦略を作成できる。そして個々のTraderは人間に理解に可能な戦略からなるので解釈可能である。我々は提案手法の有効性を、実際の株式市場のデータを用いた実験で確認する。

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード