15:40 〜 16:00
[2G5-OS-18a-02] EEGデータでの事前学習済み深層学習モデルを用いたInner Speechの単語分類
[[オンライン]]
キーワード:転移学習、スピーチデコーディング、EEG、inner speech
脳活動データからのinner speechのデコードは, 障害を抱えた患者の意思疎通の円滑化や, メタ認知理解などに繋がると考えられる. 先行研究では, 深層学習モデルEEGNet を用いて実験が行われたが, 4 クラス分類のタスクで30% ほどの正答率であった. ここで, 転移学習を用いた特徴量抽出の精緻化が有効であると考えられる.
しかしinner speech に転移学習が用いられた研究は未だなく, EEGデータ一般でも, 異なるタスクのデータや, EEG以外のデータの転移学習における有効性については, 十分に検証がなされていない.
本研究では, inner speech データセットに, ドメインやデータ量の異なるデータセットを用いた転移学習を行い, 特徴量抽出の改善を検証した.
結果, 異なる被験者のデータを用いた転移学習による精度の向上が確認できたが, 異なるタスクのEEGデータを用いた場合は精度は改善しなかった. 一方で画像データセットは, 凍結する層を工夫することで, EEGデータとは性質が異なるにも関わらず, 精度の向上が確認された.
しかしinner speech に転移学習が用いられた研究は未だなく, EEGデータ一般でも, 異なるタスクのデータや, EEG以外のデータの転移学習における有効性については, 十分に検証がなされていない.
本研究では, inner speech データセットに, ドメインやデータ量の異なるデータセットを用いた転移学習を行い, 特徴量抽出の改善を検証した.
結果, 異なる被験者のデータを用いた転移学習による精度の向上が確認できたが, 異なるタスクのEEGデータを用いた場合は精度は改善しなかった. 一方で画像データセットは, 凍結する層を工夫することで, EEGデータとは性質が異なるにも関わらず, 精度の向上が確認された.
講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。