2022年度 人工知能学会全国大会(第36回)

講演情報

国際セッション

国際セッション » ES-2 Machine learning

[2S6-IS-3d] Machine learning

2022年6月15日(水) 17:20 〜 18:40 S会場 (遠隔S)

Chair: Hiroki Shibata (Tokyo Metropolitan University)

18:20 〜 18:40

[2S6-IS-3d-04] PU Learning using Optimal Transport with Laplacian Regularization

〇Ryo Kageyama1, Takumi Fukunaga2, Hiroyuki Kasai1,2 (1. Department of Communications and Computer Engineering, School of Fundamental Science and Engineering, Waseda University, 2. Department of Computer Science and Communications Engineering, Graduate School of Fundamental Science and Engineering, Waseda University)

Regular

キーワード:PU Learning, Optimal Transport, Laplacian Regularization

PU learning is one of the fields of machine learning and is an extension of binary classification. It differs from binary classification in that only positive-labeled and unlabeled data is given as training data. In PU learning, there is an assumption that similar datas have close probability of belonging to a positive class. One of the methods of PU learning is to use the partial optimal transport (POT) problem, but this method does not take into account this assumption. To this end, this paper proposed the POT with Laplacian regularization to perform mapping based on the distance relation before and after transportation. Numerical evaluations show the effectiveness of our proposed method.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード