15:30 〜 15:50
[3D4-GS-10-01] CNNを用いた風情報からの乱気流予測システム
キーワード:気象、畳み込みニューラルネットワーク、乱気流、航空
航空機の運航において、乱気流の発生の有無を予測することは重要である。本研究では、風の数値予報データから乱気流の有無を予測することを目的とし、畳み込みニューラルネットワーク(CNN)により予測モデルの作成を行った。
本モデルでは、約320km四方領域の東西風、南北風、東西シアー、南北シアーの情報を4チャネル画像としてCNNの入力とし、領域中心点での乱気流発生有無を出力として予測する。学習データは、約1年分の風の数値データに対して、パイロットにより報告された乱気流情報に基づき、乱気流の有無をラベル付けを行うことで作成した。また、季節ごとの気象条件の変化を考慮するため、季節ごとに予測モデルを学習した。
その結果、補足率は70%~80%となり、従来の点ごとに予測する方法と比較して高い精度で予測できることが確認できた。さらに、3時間ごとに気象庁より配信される風の数値予報データに基づき乱気流発生の予測を自動実行するシステムを実装した。
本モデルでは、約320km四方領域の東西風、南北風、東西シアー、南北シアーの情報を4チャネル画像としてCNNの入力とし、領域中心点での乱気流発生有無を出力として予測する。学習データは、約1年分の風の数値データに対して、パイロットにより報告された乱気流情報に基づき、乱気流の有無をラベル付けを行うことで作成した。また、季節ごとの気象条件の変化を考慮するため、季節ごとに予測モデルを学習した。
その結果、補足率は70%~80%となり、従来の点ごとに予測する方法と比較して高い精度で予測できることが確認できた。さらに、3時間ごとに気象庁より配信される風の数値予報データに基づき乱気流発生の予測を自動実行するシステムを実装した。
講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。