2022年度 人工知能学会全国大会(第36回)

講演情報

オーガナイズドセッション

オーガナイズドセッション » OS-15 移動系列のデータマイニングと機械学習

[3G3-OS-15a] 移動系列のデータマイニングと機械学習(1/2)

2022年6月16日(木) 13:30 〜 14:30 G会場 (Room G)

オーガナイザ:藤井 慶輔(名古屋大学)[現地]、竹内 孝(京都大学)、沖 拓弥(東京工業大学)、西田 遼(東北大学)、田部井 靖生(理化学研究所)、前川 卓也(大阪大学)

13:50 〜 14:10

[3G3-OS-15a-03] Preliminary Investigation of Using Crowd-sourced Photos with Wi-Fi Signals for Predicting Indoor Location Class

〇Teerawat Kumrai1, Takuya Maekawa1, Kazuya Ohara2, Yizhe Zhang1, Joseph Korpela1, Tomoki Murakami 3, Hirantha Abeysekera3 (1. Graduate School of Information Science and Technology, Osaka University, 2. NTT Communications Science Laboratories, 3. NTT Access Network Service Systems Laboratories)

キーワード:Wi-Fi RSS information, indoor location class prediction, convolutional variational autoencoder

Due to the recent evolution and proliferation of smartphones and the social network service (SNS), there are a huge amount of images taken by smartphones at various places that have been uploaded to SNS. Furthermore, various sensors in smartphones such as camera and Wi-Fi modules enable us to easily generate a camera image associated with the sensory information that represents the context in which the image was taken. Therefore, this work investigates a method for using the benefits of camera images associated with Wi-Fi signal strength information to predict indoor location class for shopping complexes. Our method first estimates the store at which a camera image was taken by analyzing the image and web images of branch stores of store chains. Then, the floor plan is used to determine the 2D coordinates of the images taken at branch stores. A transformation function, that maps Wi-Fi signals onto the 2D coordinates, is then constructed using Wi-Fi signals of the branch store images and their estimated 2D coordinates. The function is adopted to predict the indoor location class of images associated with Wi-Fi signals. Moreover, our transformation function has novel features for addressing the non-linearity of the Wi-Fi space, generating virtual Wi-Fi scans on the floor, and training on unlabeled Wi-Fi signals.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード