2022年度 人工知能学会全国大会(第36回)

講演情報

国際セッション

国際セッション » ES-2 Machine learning

[3S3-IS-2e] Machine learning

2022年6月16日(木) 13:30 〜 14:50 S会場 (遠隔S)

Chair: Akinori Abe (Chiba University)

14:10 〜 14:30

[3S3-IS-2e-03] VAE-iForest: Auto-encoding Reconstruction and Isolation-based Anomalies Detecting Fallen Objects on Road Surface

〇Takato Yasuno1, Junichiro FUjii1, Riku Ogata1, Masahiro Okano1 (1. Yachiyo Engineering Co.,Ltd. RIIPS)

Regular

キーワード:Road Monitoring, Fallen Object, Auto-encoding, isolation-based Anomalies, Road Surface Application

In road monitoring, it is an important issue to detect changes in the road surface at an early stage to prevent damage to third parties. The target of the falling object may be a fallen tree due to the external force of a flood or an earthquake, and falling rocks from a slope. Generative deep learning is possible to flexibly detect anomalies of the falling objects on the road surface. We prototype a method that combines auto-encoding reconstruction and isolation-based anomaly detector in application for road surface monitoring. Actually, we apply our method to a set of test images that fallen objects is located on the raw inputs added with fallen stone and plywood, and that snow is covered on the winter road. Finally we mention the future works for practical purpose application.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード