2022年度 人工知能学会全国大会(第36回)

講演情報

インタラクティブセッション

一般セッション » インタラクティブセッション

[3Yin2] インタラクティブセッション1

2022年6月16日(木) 11:30 〜 13:10 Y会場 (Event Hall)

[3Yin2-06] 汎用言語モデルBrainBERTを用いた言語刺激下の脳内状態推定

〇Ying LUO1、Ichiro Kobayashi1 (1.Ochanomizu University)

キーワード:BrainBERT, Encoding Model, brain activity data

Currently, many researchers have used language models to achieve excellent results in various fields, such as understanding the semantics of text and extracting multimedia information like videos. Furthermore, many investigations have also been conducted to capture the generative correspondence between text and the brain. In this paper, we constructed a model based on the correspondence between brain activity data and semantic representation by BERT, called BrainBERT. The BrainBERT was used to build an encoding model between text and brain activity states, and to estimate the brain activity. In brief, we have achieved the two primary achievements of this research. 1) We verified the superiority of the BrainBERT model for brain signal extraction compared to the other 20 popular language models. 2) Using visualization tools such as PyCortex, we visualized the correlation of brain activity data according to the regions of interest in the brain.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード