2022年度 人工知能学会全国大会(第36回)

講演情報

インタラクティブセッション

一般セッション » インタラクティブセッション

[4Yin2] インタラクティブセッション2

2022年6月17日(金) 12:00 〜 13:40 Y会場 (Event Hall)

[4Yin2-09] 秘密計算を用いた不均衡データの学習を行うフェデレーテッドラーニングシステムの提案

〇田村 光太郎1 (1.野村総合研究所)

キーワード:フェデレーテッドラーニング、秘密計算

システムの各ユーザが保有する不均衡データに対して、フェデレーテッドラーニングを行うための勾配データ共有システムを構築した。まず、多数のユーザ間での鍵の配送として、一時的な鍵を発行し、鍵管理のコストの削減と、計算サーバとモデル管理者の結託を防ぐことを考えた。さらに、参加者から送信される勾配をデータサイズや不均衡の比率を秘匿したまま加重することで、AIの学習に効果的となる勾配の計算を行った。これらの手法を利用したフェデレーテッドラーニングの効果的な運用をおこなえるシステムを提案した。

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード