[4Yin2-09] 秘密計算を用いた不均衡データの学習を行うフェデレーテッドラーニングシステムの提案
キーワード:フェデレーテッドラーニング、秘密計算
システムの各ユーザが保有する不均衡データに対して、フェデレーテッドラーニングを行うための勾配データ共有システムを構築した。まず、多数のユーザ間での鍵の配送として、一時的な鍵を発行し、鍵管理のコストの削減と、計算サーバとモデル管理者の結託を防ぐことを考えた。さらに、参加者から送信される勾配をデータサイズや不均衡の比率を秘匿したまま加重することで、AIの学習に効果的となる勾配の計算を行った。これらの手法を利用したフェデレーテッドラーニングの効果的な運用をおこなえるシステムを提案した。
講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。