2022年度 人工知能学会全国大会(第36回)

講演情報

インタラクティブセッション

一般セッション » インタラクティブセッション

[4Yin2] インタラクティブセッション2

2022年6月17日(金) 12:00 〜 13:40 Y会場 (Event Hall)

[4Yin2-38] 少数の胸部X線画像を用いた画像分類モデルの構築

〇佐野 勲1、塚田 啓介1、中臣 政司1、杉谷 康雄1 (1.中外製薬株式会社)

キーワード:ChestX-ray8、lightweight-GAN、医療データ

正確な画像診断技術の開発は医療分野の主要な課題の一つである。従来、画像診断による病態の分類は医師の目視によって行われていた。しかし、目視による診断は、主観的な場合があり、また、同じ画像を見ても医師によって診断結果が異なることも知られていた。近年、さまざまな機械学習の手法が提案され、とりわけ画像分類モデルの構築では、人間を超える性能を発揮するケースが報告されてきた。従来、機械学習を活用した画像診断技術の開発では、学習に用いることができるデータが限られているために高精度なモデルを構築することが困難だった。しかし近年、さまざまな生成モデルが登場したことにより、少数の画像データをもとに高精度なモデルを構築することが可能であることが示唆された。そこで、本研究では、胸部X線画像の限られたパブリックデータ(NIH ChestX-ray8)を用いてGANによるデータ生成を行って画像分類モデルを構築し、その手法がモデルの精度に与える影響を調べた。本研究では気胸や肺炎、心臓肥大などの一般的な胸部病変を対象とした。本研究は、限られたデータでも、精度の高い画像分類モデルが構築できることを示唆した。

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード