2023年度 人工知能学会全国大会(第37回)

講演情報

国際セッション

国際セッション » IS-2 Machine learning

[1U3-IS-2a] Machine learning

2023年6月6日(火) 13:00 〜 14:40 U会場 (遠隔)

Chair: Yuki Shibata (Tokyo metropolitan university)

13:40 〜 14:00

[1U3-IS-2a-03] One-class Damage Detector Using Fully-Convolutional Data Description for Prognostics

〇Takato Yasuno1, Masahiro Okano1, Riku Ogata1, Junichiro Fujii1 (1. Yachiyo Engineering Co.,Ltd. RIIPS)

[[Online, Working-in-progress]]

キーワード:One-class Damage Detection, Fully-convolutional Data Description, Damage Explanation, Civil Infrastructure (pavement, bridge, dam) , Prognostic Deterioration

It is important for infrastructure managers to maintain a high standard to ensure user satisfaction during a lifecycle of infrastructures. Surveillance cameras and visual inspections have enabled progress toward automating the detection of anomalous features and assessing the occurrence of the deterioration. Frequently, collecting damage data constraints time consuming and repeated inspections. One-class damage detection approach has a merit that only the normal images enables us to optimize the parameters. Simultaneously, the visual explanation using the heat map enable us to understand the localized anomalous feature. We propose a civil-purpose application to automate one-class damage detection using the fully-convolutional data description (FCDD). We also visualize the explanation of the damage feature using the up-sampling-based activation map with the Gaussian up-sampling from the receptive field of the fully convolutional network (FCN). We demonstrate it in experimental studies: concrete damage and steel corrosion and mention its usefulness and future works.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード