2023年度 人工知能学会全国大会(第37回)

講演情報

国際セッション

国際セッション » IS-1 Knowledge engineering

[1U4-IS-1a] Knowledge engineering

2023年6月6日(火) 15:00 〜 16:40 U会場 (遠隔)

Chair: Yasufumi Takama (Tokyo metropolitan university)

15:20 〜 15:40

[1U4-IS-1a-02] Knowledge-aware attentional neural network for explainable recommendation

〇Yun Liu1, Jun Miyazaki2, Ryutaro Ichise2 (1. National Institute of Advanced Industrial Science and Technology, 2. Tokyo Institute of Technology)

[[Online, Regular]]

キーワード:Knowledge-aware recommendation, Explainable recommendation, Knowledge graph

We propose a knowledge-aware attentional neural network (KANN) for dealing with recommendation tasks by extracting knowledge entities from user reviews and capturing understandable interactions between users and items at the knowledge level. The proposed KANN can not only capture the inner attention among user (item) reviews but also compute the outer attention values between users and items before generating corresponding latent vector representations. These characteristics enable the explicit preferences of users for items to be learned and understood. Furthermore, our results and analyses highlight the relatively high effectiveness and reliability of KANN for explainable recommendation. Our code is publicly released at https://github.com/liuyuncoder/KANN.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード