2023年度 人工知能学会全国大会(第37回)

講演情報

国際セッション

国際セッション » IS-2 Machine learning

[1U5-IS-2b] Machine learning

2023年6月6日(火) 17:00 〜 18:40 U会場 (遠隔)

Chair: Rafal Rzepka (Hokkaido university)

17:20 〜 17:40

[1U5-IS-2b-02] Multilevel Sentence Embeddings for Personality Prediction

〇Paolo Tirotta1, Akira Yuasa1, Masashi Morita1 (1. NTT DATA)

[[Online, Regular]]

キーワード:Classification, Metric Learning, Clustering, Machine Learning

Representing text into a multidimensional space can be done with sentence embedding models such as Sentence-BERT (SBERT). However, training these models when the data has a complex multilevel structure requires individually trained class-specific models, which increases time and computing costs.
We propose a two step approach which enables us to map sentences according to their hierarchical memberships and polarity. At first we teach the upper level sentence space through an AdaCos loss function and then finetune with a novel loss function mainly based on the cosine similarity of intra-level pairs.
We apply this method to three different datasets: two weakly supervised Big Five personality dataset obtained from English and Japanese Twitter data and the benchmark MNLI dataset. We show that our single model approach performs better than multiple class-specific classification models.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード