2023年度 人工知能学会全国大会(第37回)

講演情報

一般セッション

一般セッション » GS-10 AI応用

[2E1-GS-10] AIと応用:医療/臨床への応用Ⅲ

2023年6月7日(水) 09:00 〜 10:40 E会場 (大会議室 A2)

座長:上村 健人(富士通) [現地]

09:00 〜 09:20

[2E1-GS-10-01] 神経疾患患者のリハビリテーション応用を目的としたアンサンブル学習に基づくNIRS-BCIシステム

〇増尾 明1,2、佐久間 拓人2、加藤 昇平2 (1. 修文大学短期大学部、2. 名古屋工業大学大学院工学研究科)

キーワード:ヒューマンインタフェース、意思伝達、補助代替コミュニケーション、作業療法、近赤外分光法

重度運動機能障害を呈する患者の生活支援において,意思伝達手段の確保は極めて重要である.本稿では,生体信号を活用して意思を伝達するBrain-Computer Interface(BCI)の構築を目的として,近赤外分光法(NIRS)信号を用いたアンサンブル学習によるBCIシステムを提案する. 神経疾患患者3名を対象として,OEG-SpO2を使用して前頭前野領域の酸素化ヘモグロビン濃度変化を計測した.脳機能計測には,安静30秒とタスク30秒を1試行とするブロックデザインを使用し,タスクには暗算課題および音楽想起課題を採用した.判別モデルには変数選択および次元圧縮手法を適用したRandom Forestを用いた.NIRS信号に異なる前処理を適用して作成した3種のデータセットによる予測結果を多数決投票により統合して,モデル性能を評価した. 脳状態判別の結果,正答率は参加者Aが85%,Bが79%,Cが67%であった.今後,長期の脳機能計測によってデータサイズを拡張し,NIRS信号の非定常性に対するモデルの頑健性を検証する.そして,神経疾患患者の意思伝達を実現する非侵襲型BCIへの応用を目指す.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード