2023年度 人工知能学会全国大会(第37回)

講演情報

一般セッション

一般セッション » GS-6 言語メディア処理

[2E5-GS-6] 言語メディア処理

2023年6月7日(水) 15:30 〜 17:10 E会場 (大会議室 A2)

座長:本浦 庄太(NEC) [現地]

15:50 〜 16:10

[2E5-GS-6-02] Prompting pre-trained Large Language Models for formality-controlled En-Ja Translation

〇Pin Chen Wang1, Edison Marrese-Taylor1,2, Yutaka Matsuo1 (1. University of Tokyo, 2. AIST)

キーワード:Large Language Model, Prompting, Formality, Machine Translation

In this paper, we study the effectiveness of several prompting techniques for controlling the formality level of machine translation (MT) using former existing pre-trained Large Language Models (LLM), including GPT-3 and ChatGPT. Our experimental setting includes a selection of state-of-the-art LLMs and uses an En-Ja parallel corpus specifically designed to test formality control in machine translation, and we propose an approach based on machine learning for evaluating the control capabilities of MT models. Overall, our results provide empirical evidence suggesting that our classification-based evaluation works well in practice and that prompting is a viable approach to control the formality level of En-Ja machine translation using LLMs.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード