2023年度 人工知能学会全国大会(第37回)

講演情報

オーガナイズドセッション

オーガナイズドセッション » OS-21 世界モデルと知能

[2G4-OS-21d] 世界モデルと知能

2023年6月7日(水) 13:30 〜 15:10 G会場 (大会議室 A4)

オーガナイザ:鈴木 雅大、岩澤 有祐、河野 慎、熊谷 亘、松嶋 達也、森 友亮、松尾 豊

14:30 〜 14:50

[2G4-OS-21d-04] 類似グラフ環境における事前知識を活用した方策学習のための世界モデル

〇河村 和紀1、池之内 颯都3、石川 峻弥2、村上 綾菜4、河野 慎1、松尾 豊1 (1. 東京大学、2. 電気通信大学、3. 愛媛大学、4. お茶の水女子大学)

キーワード:世界モデル、深層学習、強化学習、グラフニューラルネットワーク、ゲームAI

本論文では、グラフで表される環境において事前知識を有効に活用して最適な方策を求めるための世界モデルに基づく強化学習手法を紹介する。ゲームや交通ネットワーク、知識グラフ、社会ネットワーク、通信ネットワークなど、仮想世界や現実世界においてグラフで表される環境は多い。これらの環境で最適な方策を求めるための手法はいくつかあるが、既存の研究においては、類似した環境下で獲得した事前知識を新たな方策を学習する際に活用できていない。そこで、本研究ではグラフで表される環境に対する事前知識を獲得した状態でより良い方策を学習する手法を提案する。また、グラフで表される迷路ゲームをシミュレーションし、提案手法が事前知識を用いない単純な強化学習モデルよりも性能が良いことを示す。

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード