17:30 〜 17:50
[2G6-OS-21f-01] 空気圧人工筋肉のスケール可能なデータ収集システムとモデル学習
[[オンライン]]
キーワード:ソフトロボティクス、予測モデル
ゴムやエラストマーなどの柔らかい素材でできたロボットはソフトロボットと呼ばれ,その物理的な柔らかさから,従来のロボットの課題の一つである安全性を保証できるとして注目が集まっている.一方で,ソフトロボットの課題の一つとして,柔らかさゆえに正確な数理モデルの計算が困難であるため,高精度な制御が難しいことが挙げられる.
そこで本研究では,ソフトロボットの一種であるMcKibben型人工筋肉に対して,高精度な制御の実現のための,予測モデルを学習によって獲得することを目的とした.空気圧,筋肉長,荷重データを収集する,スケール可能なデータ収集装置の作成し,収集したデータを用いて時系列予測モデルの学習を行った.さらに,学習した予測モデルを用いて制御タスクを実行し,本手法の有効性を検証した.
そこで本研究では,ソフトロボットの一種であるMcKibben型人工筋肉に対して,高精度な制御の実現のための,予測モデルを学習によって獲得することを目的とした.空気圧,筋肉長,荷重データを収集する,スケール可能なデータ収集装置の作成し,収集したデータを用いて時系列予測モデルの学習を行った.さらに,学習した予測モデルを用いて制御タスクを実行し,本手法の有効性を検証した.
講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。