15:20 〜 15:40
[4H3-OS-6b-05] マルチエージェント記号創発に基づく協調的行動の学習と生成
Control as Inferenceとメトロポリス名付けゲームの融合
キーワード:マルチエージェント、記号創発、強化学習
人はコミュニケーションを取ることで,互いに行動を調整し,両者にとって望ましい行動をとることができる.このような能力は,複数台のロボットが協調して効率的にタスクを遂行するために必要な能力である.そこで,本稿では2体のエージェントの間で行動を調整するための記号を創発し,協調行動の学習・生成が可能な確率的生成モデルを提案する.提案モデルの推論では,まず各エージェントがCotrol as Inferenceの枠組みに従い行動をプランニングする.次に,メトロポリス・ヘイスティングス名付けゲームに基づき,一方のエージェントが行動を調整するための記号列提案し,もう一方が受理または棄却することを繰り返すコミュニケーションを通して,最適な記号列を推論する.この記号列に沿うように,再度,各エージェントは行動をプランニングする.このようにプランニングとコミュニケーションを繰り返すことで,協調的行動を生成することができる.実験ではグリッドワールでの2体のエージェントの移動タスクを行い,衝突せずにゴールへ到達可能な協調的行動をプランニングできることを確認した.
講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。