2023年度 人工知能学会全国大会(第37回)

講演情報

一般セッション

一般セッション » GS-10 AI応用

[4N2-GS-10] AI応用:認知・言語モデル・テスト理論

2023年6月9日(金) 12:00 〜 13:20 N会場 (会議室 D2)

座長:鈴木 雅大(東京大学) [現地]

13:00 〜 13:20

[4N2-GS-10-04] 重み付き最大クリーク探索を用いた自動テスト構成

〇門脇 瑞穂1、渕本 壱真1、植野 真臣1 (1. 電気通信大学)

キーワード:自動テスト構成、並行テスト、重み付き最大クリーク問題、項目反応理論

CBTの世界標準であるE-Testingでは各テストで出題される項目が異なるが,受験者得点の予測誤差が等質なテスト群(並行テスト)が必要となる.このテストでは同一能力の受験者が異なるテストを受験しても同一の得点となる保証があり,問題が格納されたデータベースから可能な限り多く生成することが望ましい.現在最も多くの並行テストを構成できる手法として,Fuchimotoら(2022)は最大クリーク問題と整数計画法を用いた手法を提案している.並行テスト生成では,テスト生成数とテストの等質性の間にトレードオフがあるが,この手法では手動でハイパーパラメータをチューニングして解決している.本論文では,テスト生成数とテストの等質性の間のトレードオフを自動的に調整する手法として,重み付き最大クリーク探索を用いた自動テスト構成手法を提案する.具体的には,頂点をテスト,辺をテスト間重複項目,頂点の重みを目標とする予測誤差からの差としたグラフから重み付き最大クリーク探索を行う.提案手法はテスト構成数を減少させることなく,テスト間の予測誤差の差を更に小さくできた.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード