2019年第80回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

コードシェアセッション » 【CS.8】 10.1 新物質・新機能創成(作製・評価技術)、10.2 スピン基盤技術・萌芽的デバイス技術、10.3 スピンデバイス・磁気メモリ・ストレージ技術、10.4 半導体スピントロニクス・超伝導・強相関のコードシェアセッション

[20p-E216-1~7] 【CS.8】 10.1 新物質・新機能創成(作製・評価技術)、10.2 スピン基盤技術・萌芽的デバイス技術、10.3 スピンデバイス・磁気メモリ・ストレージ技術、10.4 半導体スピントロニクス・超伝導・強相関のコードシェアセッション

2019年9月20日(金) 13:30 〜 15:15 E216 (E216)

仕幸 英治(大阪市大)

14:45 〜 15:00

[20p-E216-6] Tailoring domain-wall motion and magnetization in synthetic antiferromagnets through ionic liquid gating

〇(D)Yicheng Guan1、Bin Cui1、Xilin Zhou1、Tianping Ma1、Stuart S. P. Parkin1 (1.Max-planck Society)

キーワード:domain wall motion, ionic liquid gating

Racetrack memory devices based on highly packed magnetic domain wall motions (DWM) in perpendicular magnetized heterostructures have been intensely researched since its potential for realizing next generation memory devices with high efficiency, high speed and low energy consumption. These DWM will have a Néel wall structure and could be well motivated with Spin Orbit torque originating from the interfacial Spin Orbit coupling. A synthetic antiferromagnetic (SAF) structure composed two magnetic sub-layers exchange coupled through an antiferromagnetic spacing layer could further increase the capacity and efficiency of the racetrack devices thanks to its low remnant magnetization and strong exchange coupling. The exchange coupling not only stabilizes the Néel wall configuration but also gives rise to an exchange-coupling torque closely related to the exchange coupling strength as an additional driving force for a more efficient DWM.
In this work, we show a non-volatile ionic liquid (IL) gating effect that the DWM velocity in SAF structure can be reversibly manipulated up to 300%. Such a large change in domain wall motion velocity is caused by the IL gating induced modification of interlayer exchange coupling, as well as remnant magnetization ratio. Furthermore, by using high resolution transmission electron microscopy and energy dispersive x-ray detector technique, we confirm the above mentioned substantial changes to be induced by the metal ion migration rather than the electrostatic changes of carrier density. This work not only provides a novel understanding for the underling mechanism of IL gating on metal heterostructures, but also paves a way for dynamic manipulation of spintronic devices.