2020年第81回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

13 半導体 » 13.1 Si系基礎物性・表面界面・シミュレーション

[10p-Z09-1~20] 13.1 Si系基礎物性・表面界面・シミュレーション

2020年9月10日(木) 12:30 〜 18:00 Z09

嵯峨 幸一郎(ソニー)、森 伸也(阪大)、蓮沼 隆(筑波大)

16:30 〜 16:45

[10p-Z09-15] A Simulation Study on the System Performance of Neural Networks using Embedded Nonvolatile Memory

〇(M2)Paul Davin Johansen1,2、Masaharu Kobayashi1,2 (1.Inst. of Industrial Science、2.University of Tokyo)

キーワード:neural network, nonvolatile memory

Hardware neural networks (HNNs) can provide faster training/inference latency and reduced power consumption than neural networks implemented via software. While neural networks have been studied extensively, as of yet, there has been little research on how device configuration and variability can affect performance metrics for neural networks on a system level. In this simulation study, several system performance metrics such as accuracy, latency, and energy consumption for HNNs were analyzed.