2020年第81回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

CS コードシェアセッション » 【CS.7】 7.4 量子ビーム界面構造計測と9.5 新機能材料・新物性のコードシェアセッション

[9a-Z24-1~10] 【CS.7】 7.4 量子ビーム界面構造計測と9.5 新機能材料・新物性のコードシェアセッション

2020年9月9日(水) 09:00 〜 11:45 Z24

高瀬 浩一(日大)、田中 啓文(九工大)

11:30 〜 11:45

[9a-Z24-10] Physical reservoir system with single-walled carbon nanotube/ asymmetric porphyrin-sandwiched polyoxometalate random network

〇(D)Deep Banerjee1、Takumi Kotooka1、Yoshito Yamazaki2、Takuji Ogawa2、Hirofumi Tanaka1 (1.KYUTECH、2.Osaka Univ)

キーワード:Reservoir computing, Single walled carbon nanotube, Porphyrin polyoxometalate

Reservoir computing (RC) has become a core deep neural network algortihm for learning and training big complex data in an energy-efficient way. Among various other physical reservoir systems already reported we here exploit the dynamics of single-waaled carbon nanitube/porphyrin polyoxometalate (SWNT/Por-POM) by conducting electrical measurements. Properties like non-linearity, inverse power law scaling, fading memory, high dimensionality and phase delayed non-linear outputs (echo-state property) from a time varying sine wave input satisfies the RC charecteristics. The benchmark RC task of waveform generation and non-linear autoregressive moving average (NARMA) time prediction series were also successfully achieved. Based on these findings we conclude SWNT/Por-POM can solve cognitive tasks in real time and can be used in the future for speech recognition as well.