2020年第81回応用物理学会秋季学術講演会

講演情報

一般セッション(口頭講演)

23 合同セッションN「インフォマティクス応用」 » 23.1 合同セッションN「インフォマティクス応用」

[9p-Z09-1~18] 23.1 合同セッションN「インフォマティクス応用」

2020年9月9日(水) 13:00 〜 18:00 Z09

柴田 基洋(東大)、小嗣 真人(東理大)、冨谷 茂隆(ソニー)

15:45 〜 16:00

[9p-Z09-11] Q-learning for square lattice Ising model

ChihChieh Chen1、Kodai Shiba1,2、Masaru Sogabe1、Katsuyoshi Sakamoto2、Tomah Sogabe2,1 (1.Grid Inc.、2.UEC)

キーワード:Machine learning

The exponentially large degrees of freedom of quantum many-body systems make them difficult to simulate using computational approaches. Machine learning provides new opportunities to tackle the curse of dimensionality in quantum many-body problems. We use the Q-learning algorithm to study periodic Ising model on the 2-dimensional square lattice. In experiments on 2 by 2 and 4 by 4 lattices, the agent predicts correct antiferromagnetic ground states using Q-table. The learned Q-table has higher Q values for the degenerated ground states. We also implemented and tested the algorithm using Deep Q Network. We found some hyperparameters leading to stable learning curves and correct ground states. The results are compared and discussed.